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Abstract—In interference alignment, users sharing a wireless
channel are each able to achieve data rates of up to half of the
non-interfering channel capacity, no matter the number of users.
In an ergodic setting, this is achieved by pairing complementary
channel realizations in order to amplify signals and cancel
interference. However, this scheme has the possibility for large
delays in decoding message symbols. We show that delay can
be mitigated by using outputs from potentially more than two
channel realizations, although data rate may be reduced. We
further demonstrate the tradeoff between rate and delay via a
time-sharing strategy. Our analysis considers Gaussian channels;
an extension to finite field channels is also possible.

I. I NTRODUCTION

The technique of interference alignment has expanded what
is known about achievable rates for wireless interference chan-
nels. First introduced by Cadambe and Jafar [1], interference
alignment employs a transmission strategy that compensates
for the interference channel between transmitters and receivers.
At each receiver, the interference components can then be
consolidated into a part of the channel that is orthogonal tothe
signal component. In fact, the interference is isolated to half
of the received signal space, while the desired signal is located
in the other half—leading to the statement that every receiver
can have “half the cake.” This is a significant improvement
over every receiver receiving only1/K of the cake, which
is the case if standard orthogonalization techniques are used
(whereK is the number of transmitter-receiver pairs).

Interference alignment in an ergodic setting is studied in
Nazeret al. [2], and provides the basis for our analysis. Using
their Gaussian achievable scheme, we delve deeper into the
associated decoding delays and consider how delays may be
reduced, although at the cost of decreased rate. Even though
the analysis in [2] additionally considers a scheme for finite
field channels (also similar to the method in [3]), we defer to
the reader the extension of our analysis to the finite field case.

Our approach for reducing delays is to consider interfer-
ence alignment where alignment may require more than one
additional instance of channel fading. In [2], interference
is aligned by transmitting the same message symbol during
complementary channel realizations. In contrast, our approach
will utilize multiple channel realizations (potentially more than
two), which when summed together yield cancelled interfer-
ence (and amplified signal). We call such a set of channel
matrices analignment set—which will be more formally

defined later. Using multiple channel realizations to align
interference has also been studied in [4] for different cases of
receiver message requirements; however, we instead consider
how to utilize these many channel realizations to reduce the
delay of individual messages at each receiver. At first glance,
it may seem that using alignment sets of larger sizes will only
increase the delay; but if we allow alignment using alignment
sets of multiple sizes simultaneously, then we can decreasethe
time required for a message symbol to be decoded.

We now give a simple example of an alignment set and
show the concept of interference alignment.

Example 1:Consider a3-user Gaussian interference chan-
nel with channel response given byY = HX + Z, where
X denotes the transmitted symbols (with power constraint
E[|Xk|

2] ≤ P for each userk = 1, 2, 3), H is the channel
matrix, Z is i.i.d. zero-mean unit-variance additive white
Gaussian noise, andY gives the received symbols. Suppose
the following channel matrices occur at time stepst0, t1, t2,
and t3, respectively:

H
(0) =

[

1 −1 1
1 1 −1
−1 1 1

]

H
(1) =

[

1 −1 −1
−1 1 1
1 1 1

]

H
(2) =

[

1 1 −1
−1 1 1
−1 −1 1

]

H
(3) =

[

1 1 1
1 1 −1
1 −1 1

]

.

If the same [complex] vectorX is sent at all these times, then
the sum of the non-noise terms is given by

∑3
i=0 H

(i)
X =

4[X1,X2,X3]
T because

∑3
i=0 H

(i) = 4I. By utilizing all
four channel realizations together, the signals (diagonalen-
tries) are amplified, while the interference terms (off-diagonal
entries) are cancelled, so this collection of matrices is an
alignment set. As long as a receiver knows when an alignment
set occurs, then in order to decode his own message, he does
not need to know the channel fades to the other receivers.

Inferring from [5] or [6], the astute reader may notice
that in the example, the sum capacity when sending across
each channel matrix separately is actually greater than the
alignment rate—a capacity of4 log(1 + 3P ) for separate
coding, compared to a rate of3 log(1 + 4P ) by using the
indicated interference alignment scheme. However, when the
number of transmitters (and receivers) exceeds the number
of alignment channel realizations, then the rate benefits of



using alignment sets start to become evident. Aligning across
4 channel realizations withK transmitter-receiver pairs, a rate
of K log(1 + 4P ) is achievable, which can quickly exclipse
the separate-coding sum capacity of4 log(1+KP ). Moreover,
as we will discuss, the benefit of using larger alignment setsis
not in the rate, but rather in the reduction of decoding delay.

In the next section, we will formally describe the interfer-
ence alignment setup, and define our notions of rate and delay.
In Section III, we will take a brief look at the traditional
interference alignment scheme, by considering the rate and
delay inherent in aligning interference using complementary
channel realizations. Section IV will give the main result
of this work, which is the analysis of rate and delay when
aligning interference by utilizing multiple channel realizations.
We will also give a scheme for trading off the rate and the
delay. We conclude in Section V.

II. PRELIMINARIES

The setup is the same as theK-user interference channel
of [2] and [4], where there areK transmitter-receiver pairs.
The number of channel uses isn. For the k-th transmitter,
k = 1, . . . ,K, each messagewk is chosen independently and
uniformly from the set{1, 2, . . . , 2nR̃k} for some R̃k ≥ 0.
Only transmitterk knows messagewk. Let X be the channel
input and output alphabet. The messagewk is encoded into the
n channel uses using the encoderEk : {1, 2, . . . , 2nR̃k} → Xn.
The output of the encoding function is the transmitted symbol
Xk(t) = [Ek(wk)]t at time t, for t = 1, . . . , n.

The communication channel undergoes fast fading, so the
channel fades change at every time step. At timet, the channel
matrix H(t) has complex entries[H(t)]kl = hkl(t) for k, l =
1, . . . ,K. In this model, before each timet, all transmitters
and receivers are given perfect knowledge ofH(t). We call
H to be the set of all possible channel fading matrices.

The message symbolXk(t) is transmitted at timet. We
assume zero delay across the channel, so the channel output
seen by receiverk at time t is the received symbol

Yk(t) =
K

∑

l=1

hkl(t)Xl(t) + Zk(t), (1)

whereZk(t) is an additive noise term. Each receiverk then
decodes the received message symbols according toDk :
Xn → {1, 2, . . . , 2nR̃k}, to produce an estimatêwk of wk.

Definition 1: The ergodic rate tuple(R1, R2, . . . , RK) is
achievable if for all ǫ > 0 and n large enough, there
exist channel encoding and decoding functionsE1, . . . , EK ,
D1, . . . ,DK such thatR̃k > Rk − ǫ for all k = 1, 2, . . . ,K,
andP

(

⋃K
k=1{ŵk 6= wk}

)

< ǫ.
We assume a Gaussian channel with complex channel inputs

and outputs, soX = C. Each transmitter has power constraint

E[|Xk(t)|2 | H(t) = H] ≤ SNRk, ∀H ∈ H,

where SNRk ≥ 0 is the signal-to-noise ratio. The channel
coefficientshkl(t), k, l = 1, . . . ,K, are independently and
identically distributed both in space and time. We require also

thathkl be drawn from a distribution which is symmetric about
zero, soP (hkl) = P (−hkl). The noise termsZk(t) are drawn
independently and identically from a circularly-symmetric
complex Gaussian distribution; thus,Zk(t) ∼ CN (0, 1).

A. Channel Quantization

In this exposition, we consider quantized versions of the
channel matrix. For some quantization parameterγ > 0, let
Qγ(hkl) be the closest point in(Z+ jZ)γ to hkl in Euclidean
distance. Theγ-quantized version of the channel matrixH ∈
C

K×K is given by the entries[Hγ ]kl = Qγ(hkl).
Our scheme uses typical realizations of the channel matri-

ces. For anyǫ > 0, choose the maximum magnitudeτ > 0
such thatP (

⋃

k,l{|hkl| > τ}) < ǫ
3 . Throw out all time indices

with any channel coefficient magnitude larger thanτ . Let γ
andδ be small positive constants. Then choosen large enough
so that the typical set of sequencesAn

δ of channel matrices
has probabilityP (An

δ ) ≥ 1 − ǫ
3 (see [2] for details). Because

this sequence ofγ-quantized channel matrices isδ-typical, the
corresponding rate decrease is no more than a fraction ofδ.

In the remainder of this paper, we will only deal with theγ-
quantized channel matricesHγ , so we drop the subscriptγ;
all further occurrences ofH refer to the quantized channel
realizationHγ . We also redefine the channel alphabetH to
only include the typical set of quantized channel matrices,
which has size|H| = (2τ/γ)2K2

.

B. Aligning Interference

In the standard interference alignment approach, the inter-
ference is aligned by considering the channel matrixH in
tandem with its complementary matrixHc, where

H
c =











h11 −h12 · · · −h1K

−h21 h22 · · · −h2K

...
...

.. .
...

−hK1 −hK2 · · · hKK











.

That is,Hc has entrieshkl for k = l and−hkl for k 6= l.
For alignment using more channel realizations, we define

the concept of an alignment set.
Definition 2: An alignment setof size m ∈ 2Z

+ is a
collection of matrices{H(0),H(1), . . . ,H(m−1)} such that
the diagonal entries (signal terms) are the same:

h
(0)
kk = h

(1)
kk = · · · = h

(m−1)
kk (2)

for k = 1, . . . ,K, and the sum of interference terms cancel:
∣

∣

∣
h

(0)
kl

∣

∣

∣
=

∣

∣

∣
h

(1)
kl

∣

∣

∣
= · · · =

∣

∣

∣
h

(m−1)
kl

∣

∣

∣
(3)

and
∣

∣

∣
{h

(i)
kl = h

(0)
kl | i = 1, . . . ,m − 1}

∣

∣

∣
=

m

2
− 1 (4)

∣

∣

∣
{h

(i)
kl = −h

(0)
kl | i = 1, . . . ,m − 1}

∣

∣

∣
=

m

2
(5)

for k = 1, . . . ,K, l = 1, . . . ,K, k 6= l. Within an alignment
set, the sum of channel matrices,B =

∑m−1
i=0 H

(i), will have
entriesbkk = mh

(0)
kk andbkl = 0, for k, l = 1, . . . ,K, k 6= l.



We have seen some examples of alignment sets already. Any
channel realizationH and its complementHc together form
an alignment set of size2. Additionally, the set of matrices
given in Example 1 is an alignment set of size4.

Since channel transmission is instantaneous, the only delay
considered is due to waiting for the appropriate channel
realizations before a message symbol can be decoded.

Definition 3: The average delayof an ergodic interference
alignment scheme is the expected number of time steps
between the first instance a message symbolX is sent and
the time untilX is recovered at the receiver.

If X(t0) is sent at timet0 but can not be decoded until
the appropriate interference alignment occurs at timet1, then
the delay ist1 − t0. Note that the delay does not consider
the decoding of the entire messagewk—just the symbols
transmitted at each individual time,Xk(t), k = 1, . . . ,K.

III. I NTERFERENCECANCELLATION USING

COMPLEMENTARY CHANNEL REALIZATION

The method of interference alignment via sending the same
channel input vector when a complementary channel realiza-
tion occurs is given in [2]. CallR(2)

k the achievable rate for
interference alignment using complements (i.e., requiring two
channel realizations before decoding each message symbol).

Lemma 1 ([2], Theorem 3):An achievable rate tuple by
aligning using complementary channel realizations is

R
(2)
k = 1

2E[log(1 + 2|hkk|
2SNRk)]

for k = 1, . . . ,K, where the expectation is over the distribu-
tion of channel fadeshkk drawn from the matrices inH.

When a channel realizationH occurs, then the sent message
symbol is decoded when the complementary channel realiza-
tion H

c occurs. Letd(2) denote the average delay between
channel realizationsH andH

c.
Lemma 2:When all channel realizations are equally likely,

the average delay incurred by interference alignment with
complementary channel realizations isd(2) = |H|.

Proof: Each channel realization is equally likely at each
time. The time untilHc occurs is a geometric random variable
with parameterP (Hc) = 1/|H|. The average delay is|H|.

Note that the delayd(2) can be quite large. Using our
quantization scheme,d(2) = |H| = (2τ/γ)2K2

.

IV. I NTERFERENCECANCELLATION USING MULTIPLE

CHANNEL REALIZATIONS

This section will focus on using alignment sets of sizes
m = 2 andm = 4. Extensions for larger alignment sets will
be discussed in Section IV-C.

For ease of analysis, we assume that each channel realiza-
tion H is equally likely, although similar tools for analysis
can be used when the distribution of channel realizations
is non-uniform. However, all channel realizations within the
same alignment set must have the same probability: for align-
ment setAH = {H,H(1),H(2), . . . ,H(m−1)}, we require
P (H) = P (H(1)) = P (H(2)) = P (H(m−1)). Fortunately,
this holds since we assume that channel entries are drawn from
distributions that are symmetric about zero.

A. First-to-Complete Alignment

We call the following scheme for achieving lower delay
the first-to-completescheme, which is essentially a coupon-
collecting race between an alignment set of size2 and an
alignment set of size4. For each channel realizationH ∈ H
(occurring at timet0), we collect the realizations occurring at
future timest > t0. Now we say that an alignment setAH of
size 4 has beencompletedonce all matricesH̃ ∈ AH have
been realized. IfHc occurs beforeAH is completed, then pair
up H with that realization ofHc. Otherwise, group together
H with the other members of the alignment setAH .

We derive the achievable rate by separately finding rates
when decoding using alignment sets of each size, and then
weighting these rates by the probabilities that a particular set
is completed before the other. From [2], ifH at time t0 is
paired with H

c at time t1, then transmit the same symbol
vector X(t0) at both timest0 and t1. Since this is align-
ment with channel complements, the rateRk = 1

2E[log(1 +
2|hkk|

2SNRk)] − ǫ is achievable with probability1 − ǫ.
Now we find the rate whenH at time t̂0 = t0 is instead

grouped with the members of its size-4 alignment setAH .
Assume that the channel realizations of the other members of
the alignment set occur at timeŝt1, t̂2, and t̂3, respectively.
In the scheme, we send the same message symbolXk(t̂0) at
times t̂0, t̂1, t̂2, and t̂3. The channel outputs are

Yk(t) = hkk(t)Xk(t̂0) +
∑

l 6=k

hkl(t)Xl(t̂0) + Zk(t) (6)

for t = t̂0, t̂1, t̂2, t̂3. From the alignment set definition, we
know hkk(t̂0) = hkk(t̂1) = hkk(t̂2) = hkk(t̂3) andhkl(t̂0) +
hkl(t̂1) + hkl(t̂2) + hkl(t̂3) = 0 for k = 1, . . . ,K and l 6= k.
Thus, the signal-to-interference-plus-noise ratio of thechannel
from Xk(t̂0) to Yk(t̂0) + Yk(t̂1) + Yk(t̂2) + Yk(t̂3) is at least

SNRk((4|ℜ(hkk)| − 2γ)2 + (4|ℑ(hkk)| − 2γ)2)

4 + (2γ)2
∑

l 6=k SNRl

.

Taking the channel quantization parameterγ → 0, the SINR
is 4|hkk|2SNRk, which gives the rate (asτ → ∞):

Rk = 1
4E[log(1 + 4|hkk|

2SNRk)] − 2ǫ
3 . (7)

Thus there existγ and τ such that we achieveRk >
1
4E[log(1 + 4|hkk|2SNRk)] − ǫ with probability 1 − ǫ when
aligning using an alignment set of size4.1

We now determine the probability that the first-to-complete
scheme decodes using the alignment set of size4 rather
than the alignment set of size2. This can be computed by
considering a Markov chain with the following states:

s−1: Decode using complementH
c

s0: No matches yet to any alignment set
s1: First match with size-4 alignment set
s2: Second match with size-4 alignment set
s3: Third match with size-4 alignment set, so decode usingAH

The Markov chain is shown in Figure 1. Statess−1 and s3

are absorbing. Because this is a success runs Markov chain, its

1Higher rates may be possible by optimizing power allocations,e.g., water-
filling. Here we only consider rates achievable using equal-power allocations.



s−1 s0 s1 s2 s3

1

1
|H|

1 − 4
|H|

3
|H|

1
|H|

1 − 3
|H|

2
|H|

1
|H|

1 − 2
|H|

1
|H|

1

Fig. 1. Success runs Markov chain associated with first-to-complete
alignment. States indicate progress towards completion of the alignment sets.
Quantities above the arrows indicate transition probabilities.

absorption probabilities and hitting times are known [7]. The
probability of decoding via the alignment set of size4 is the
probability of absorption at states3 starting from states0, and
is computed to beβ4 = 1/4. Note thatβ4 does not depend
on the number of possible channel realizations,|H|. This is
intuitive since matrices not belonging to an alignment set do
not affect the probability that one set completes before another.

Lemma 3:An achievable rate tuple for the first-to-complete
scheme has rates (for allk = 1, . . . ,K):

R
(2,4)
k = 3

8E[log(1 + 2|hkk|
2SNRk)]

+ 1
16E[log(1 + 4|hkk|2SNRk)].

Proof: Because decoding via the size-2 alignment set
occurs 1 − β4 of the time, and decoding via the size-4
alignment set occursβ4 of the time, an achievable rate is
R

(2,4)
k = 1

2 (1−β4)E[log(1+2|hkk|
2SNRk)]+ 1

4β4E[log(1+
4|hkk|

2SNRk)]. Plugging inβ4 = 1/4 gives the result.
Lemma 4:For the first-to-complete scheme, the average

decoding delay isd(2,4) = (3/4)|H| = (3/4)d(2).
Proof: The delay until either alignment set is completed is

the mean hitting time until one of the corresponding absorption
states is reached in the Markov chain of Figure 1. A simple
computation for the hitting time yieldsd(2,4) = (3/4)|H|.

B. Delay-Rate Tradeoff

Although the first-to-complete scheme achieves lower delay
than interference alignment using only complements, it hasthe
drawback of having lower rate. By using time-sharing, we can
achieve any delayd such that(3/4)|H| = d(2,4) ≤ d ≤ d(2) =
|H|, and every userk ∈ {1, . . . ,K} will still have increased
data rate over that ofR(2,4)

k .
In the time-sharing scheme, with probability1 − α where

0 ≤ α ≤ 1, pair upH with the first instance ofHc which
occurs later in time; this is alignment using only complements.
With probability α, however, perform the first-to-complete
scheme: pair upH with H

c only if H
c occurs before any

alignment set of size4 is completed; otherwise, groupH with
the size-4 alignment set which completes first.

Theorem 5:The achievable rate when time-sharing with
probability α of using the first-to-complete scheme is

Rk(α) = (1 − α)R
(2)
k + αR

(2,4)
k

= 1
2

(

1 − α
4

)

E[log(1 + 2|hkk|
2SNRk)]

+ α
16E[log(1 + 4|hkk|2SNRk)].

Proof: Evident.

Theorem 6:The average delay when time-sharing is

d(α) = (1 − α)d(2) + αd(2,4) = (1 − α/4)|H|.

Proof: Evident.
Corollary 7: The average delay, when time-sharing be-

tween the first-to-complete scheme (using alignment sets of
both sizes2 and 4) and channel-complement alignment, is
lower than the average delay when using only complements.

Proof: By choosing anyα > 0, we get delayd(α) strictly
less than|H| = d(2).

The reduced delay is an intuitive result since the first-
to-complete scheme allows additional opportunities to align,
without disallowing existing opportunities.

C. Extension to Larger Alignment Sets

We now extend our analysis to more general collections of
alignment sets. Consider a finite tuple of positive even numbers
I = (m1,m2, . . . ,m|I|), possibly with repetitions. We gen-
eralize first-to-complete alignment by using non-overlapping
alignment sets with sizes dictated by the entries ofI. As
soon as all members of any particular alignment set have
been seen, we stop and decode. Referring to the probability
literature, this process is identical to the multiple subset
coupon collection problem of Chang and Ross [8], in which
coupons are repeatedly drawn with replacement until any one
of several preordained subsets of coupons have been collected.

To compute the achievable rates(RI
1, R

I
2, . . . , R

I
K) and

delay dI associated with running first-to-complete alignment
among I-sized alignment sets, we construct the associated
Markov chain. The state vectors = (s1, s2, . . . , s|I|) is defined
as follows:si counts how many members of thei-th alignment
set have already occurred, excluding the initial matrixH.
Initially, the Markov chain is at states = 0, since no alignment
set member aside fromH has yet been realized. At each
time t, if H(t) is a member of thêı-th alignment set and
has not yet been realized, then incrementsı̂ := sı̂ + 1. When
sı̂ = mı̂ − 1 for someı̂, this means that thêı-th alignment set
(of sizemı̂) has been completed. The Markov chain enters an
absorbing state, and the receiver decodes. LetV denote the
set of absorbing states. The state transition probabilities are

Ps,s′ =



















mı̂−1−sı̂

|H| s′ı̂ = sı̂ + 1 for someı̂, . . .

s′i = si for all i 6= ı̂, s 6∈ V

1 −
∑

i

mi−1−si

|H| s
′ = s, s 6∈ V

1 s
′ = s, s ∈ V (absorption)

0 otherwise

.

Let βI
m be the probability that the first completed alignment

set has sizem, where m ∈ I. Equivalently, βI
m is the

probability that the Markov chain reaches an absorption state
corresponding to the completion of a size-m alignment set.
These absorption probabilities can be computed via matrix
inversion [7]. Table I gives example values forβI

m.
Following a similar argument as in Lemma 3, the rate for

receiverk ∈ {1, . . . ,K} by using a first-to-complete scheme
with specific alignment sets of sizes drawn fromI is

RI
k =

∑

m∈I

1

m
βI

mE[log(1 + m|hkk|
2SNRk)].



TABLE I
ABSORPTIONPROBABILITIES AND DELAYS†

Set sizes Absorption probability Delay

I βI
m1

βI
m2

βI
m3

dI

(2, 4) 0.75 0.25 0.75|H|
(2, 6) 0.8333 0.1667 0.8333|H|
(2, 4, 4) 0.6429 0.1786 0.1786 0.6429|H|
(2, 4, 6) 0.6944 0.2083 0.0972 0.6944|H|
(4, 6) 0.625 0.375 1.3988|H|
(4, 8) 0.7 0.3 1.4972|H|
(6, 10) 0.6429 0.3571 1.8607|H|

† For values to be valid,|H| ≥ 1+
∑|I|

i=1
(mi −1) must hold.

We now incorporate time-sharing and describe the delay-
rate tradeoff. LetI be a finite collection of these tuplesI; that
is, I = {I = (m1, . . . ,m|I|) | mi ∈ 2Z

+}. We can do time-
sharing between first-to-complete schemes, with sizes drawn
from I ∈ I, according to the vectorα = (αI1

, αI2
, . . . , αI|I|

),
where

∑

I∈I αI = 1. The rate will then be

Rk(α) =
∑

I∈I

αIR
I
k. (8)

Alternatively, to make explicit the rates due to alignment sets
of particular sizes, the rate can also be written as

Rk(α) =
∑

m∈2Z+

(

∑

I∈I : m∈I

αIβ
I
m

)

1

m
E[log(1+m|hkk|

2SNRk)].

The average delay using alignment sets of sizesI =
(m1,m2, . . . ,m|I|) is equal to the mean absorption time for
the Markov chain. From [8], by using Poisson embedding, this
delay can be computed as2

dI = |H|

∫ 1

0

1

1 − u

|I|
∏

i=1

(1 − umi−1) du. (9)

Table I gives average delays for some representative collec-
tions of alignment sets. Then the delay using time-sharing is

d(α) =
∑

I∈I

αId
I . (10)

In this analysis, we only consider alignment sets that do
not share any common matrices. However, as the number of
allowable sizes,|I|, grows larger, this condition will become
harder to fulfill since there will be greater potential for
collisions. Finding tuples of alignment sets such that there are
no overlapping channels is an avenue for future work. One
thing to note is that because only2K(K−1) matrices satisfy
h

(i)
kk = hkk and |h

(i)
kl | = |hkl| for k = 1, . . . ,K and l 6= k,

an alignment set of sizem = 2K(K−1) would consist of all
possible channel matrices which might align withH, and so
necessarily must collide with any other alignment set.

2This evaluates to an inclusion-exclusion sum of harmonic numbersHn:

dI = |H|

[

∑

U⊆I,U 6=∅

(−1)|U|+1H(

−|U|+
∑

m∈U
m

)

]

.

Also, from [8], we can find the variance of this delay, as well as the average
delay when alignment sets overlap.

A related issue is that of allowing decoding usingall
alignment sets of a particular sizem, of which there are
(

m−1
m

2

)K(K−1)
such alignment sets. For example, a system

could choose to perform first-to-complete alignment among
any alignment set of sizes2 and4. Because non-intersection
between different alignment sets may no longer be guaranteed,
the analysis will be more complicated.

The moral of this story, however, is that delay can always
be reduced by allowing alignment using a greater number of
possible choices of alignment sets. The data rate may decrease
correspondingly, so the tradeoff needs to be appropriately
chosen according to the needs of the communication system.

V. CONCLUSION

In our analysis, we have not considered the delays between
when a message symbol is available and when it is first
transmitted. We have only defined delay as the time between
when the symbol is first transmitted and when it is able to
be recovered by the receiver. We believe this is a reasonable
metric of delay, as long as message symbols are not all
generated at one time. However, an analysis using queueing
theory may be necessary to verify this claim.

In this work, we have proposed an interference alignment
scheme which reduces delay, although with potentially de-
creased data rate. Delay is mitigated by allowing more ways to
align interference—through the utilization of larger alignment
sets. We have also introduced a scheme to trade off the delay
and rate. In the end, even though the rate may be reduced,
we can still say, in the parlance of interference aligners, that
each person getsκ of the cake, where1/K ≤ κ ≤ 1/2—
so our scheme can still be an improvement over non-aligning
channel-sharing strategies in terms of data rate.

ACKNOWLEDGEMENTS

We thank Michael Gastpar for helpful comments regarding
the ergodic alignment scheme and for pointers to related work.

REFERENCES

[1] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the K-user interference channel,”IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[2] B. Nazer, M. Gastpar, S. A. Jafar, and S. Vishwanath, “Ergodic inter-
ference alignment,” inProceedings IEEE International Symposium on
Information Theory, Seoul, Korea, Jun. 28 – Jul. 3, 2009, pp. 1769–1773.

[3] S.-W. Jeon and S.-Y. Chung, “Capacity of a class of multi-source relay
networks,” IEEE Trans. Inf. Theory, submitted for publication. [Online].
Available: http://arxiv.org/abs/0907.2510

[4] B. Nazer, M. Gastpar, S. A. Jafar, and S. Vishwanath, “Interference
alignment at finite SNR: General message sets,” inProceedings 47th
Annual Allerton Conference on Communication, Control, andComputing,
Monticello, IL, Sep. 30 – Oct. 2, 2009.

[5] V. R. Cadambe and S. A. Jafar, “Multiple access outerbounds and the
inseparability of parallel interference channels,” inProceedings IEEE
Global Telecommunications Conference (GLOBECOM), New Orleans,
LA, Nov. 30 – Dec. 4, 2008.

[6] ——, “Parallel Gaussian interference channels are not always separable,”
IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 3983–3990, Sep. 2009.

[7] H. M. Taylor and S. Karlin,An Introduction to Stochastic Modeling,
3rd ed. San Diego: Academic Press, 1998.

[8] K.-C. Chang and S. M. Ross, “The multiple subset coupon collecting
problem,” Probability in the Engineering and Informational Sciences,
vol. 21, no. 3, pp. 435–440, Jul. 2007.


